
One can compare these spherical shells with analogous planar layered panels designed 
for the same conditions [4], which shows that the thickness and structure of a spherical 
shell tend to those for a planar panel as the radius increases; the two become virtually iden- 
tical for Ro > 2 m. 

NOTATION 

r, current radius; Ro, inside radius of sphere; R, outside radius; l, a, p, thermal con- 
ductivity, thermal diffusivity, and density, respectively; T, temperature; T, time; T*, peri- 
od; ~, frequency of temperature fluctuations; al, a2, heat-transfer coefficients. 
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AN INVERSE STEFAN'S PROBLEM IN CASTING MULTICOMPONENT ALLOYS 

Ya. F. Rutner UDC 536.2 

A model is considered that incorporates the feature that melting (crystallization) 
occurs over a certain temperature range, and it is shown that the solution to the 
internal inverse problem is unique in one such formulation. 

Determining the temperature pattern in a casting during crystallization is a nonlinear 
problem of the free-boundary class, in which part of the boundary is unspecified and must be 
determined when the differential equations are solved by the use of an additional boundary 
condition at that part. This relationship is readily derived from the heat-balance equation 
and is called Stefan's condition, which in the one-dimensional case takes the form 

[ ~ -~xO Tx(x, t)--~,e O----T2(x,ox 0]Ix=s(~) ---- rys '  (0" 

There are many papers on this topic, but in them it is either assumed that the crystal- 
lization occurs at a fixed temperature rather than over a certain range or that the treat- 
ment can be reduced to that. 

We consider a schematic model for the phase-transition zone in castin~ a multicomponent 
alloy. During melting (cooling), a transitional layer is formed, which may be considered as 
a thermally active resistance. 

Let the transitional layer have thickness ~ > 0, which may be fairly small. We denote 
by Ro(x) the thermal-resistance density in the transitional laver, Ro(x) = R'(x), while ro(x~ 
denotes the density of the phase-transition latent heat, ro(x) = r'(x); we now apply Kirchoff's 
and Ohm's laws to the part Ix, x + dx] of the transition layer to get 

dI (x,  t) -- ys'  (t) ro (x) dx, dT (x, t) ----- I (x, t) Ro (x) dx, 
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S O  

x 

l(x, t)= S.~s'(t)ro(~)d~ +q ,  ( z )  
s(t) 

X 

r (x ,  t ) =  ~!(~,  t) Ro(~)d~+C~, (2) 
s(t) 

where l(x, t) in (2) is defined in accordance with (i). The constants CI and C= are defined 
from the condition 

c 3  
I [ s  ( t ) ,  t ]  = - -  ~ ~ 71 [s (t), t], 7 [s (t), t] = T,. 

From (1) and (2) we ge t  C1 = I [ s ( t ) ,  t ] ,  C2 = T s ,  which g i v e s  

x O T [s(t), t], (3) l(x, t ) = ? s ' ( t )  ~ r o ( ~ ) d ~ - - h  O--x-- 1 
s(t) 

x 

T (x, t) = S I (~, t) Ro (~) d~ + T,. 
s(t) 

(4) 

We write these results in more general form, which includes a model with lumped parameters: 

x 

I (x, t ) =  7s' (t) ,t" dr (~) - -  ~, ~ T~ [s (t), t], 
Ox s(t) 

(5) 

x 

T (x, t) = ,I I (~, t) dR (~) + T~, 
s( t) 

(6) 

where by the integral we understand Lebesgue-Stieltjes one. However, with x = s(t) + 6 

I[s(t)  + 6 ,  t ] = - - ~  a_~_ T2[s(t)+6, t], 
Ox 

T [s (t) + 6, t] = 7'2 [s (t) 4- 6, t] = T v 

Then (5) and (6) give 

s(t)+8 
)'~ -~X0 T1 [s (t), t] -- Z~ ~ r~ [s (t) + 61 t] = ?s' (t)s(0 "( dr (~), 

s(o+6 
rz--r~---- ~ I(~, t) dR(~). 

s(t) 

(7) 

(8) 

We consider the following uniform densities as an example: 

R 
Ro (x) = Ro = = const, 6 

For t h i s  d i s t r i b u t i o n  we have 

0 7'1 is (t), tl - -  X~ ~ T~ [s (t) + & tl 

r 
ro ( x )  = ro  = - -  : const. 

8 

= ~,s'  ( t )  r ,  (9) 
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I(x, t ) = ? s '  (t)+[x--s(t)]--X1 @ Zl[S (t), ~], 

1 , 0 T~[s( t ) ,  tl. T, = y Vs (t) rR- -  

(lO) 

( n )  

If the process stabilizes for t § + ~ and --0 T1[s(t), t] tends to a constant value, then s'(t) 
Ox 

tends to the corresponding constant value according to (Ii). 

Therefore, if there are distributed parameters in the transitional layer, which in gen- 
eral occurs in all phase-transformation processes, the phase-transitlon boundary is not de- 
scribed by the square-root law, and the deviation from it will be the greater the more rapid- 
ly the process stabilizes under given conditions. 

On considering a model with lumped parameters (~ = 0), we find that the houndary condi- 
tion system for the phase-transition region becomes 

T | - - T  s : RI~" 1 ~  TI[S(t), t] @- R2~,2 ~ T 2[S (t), t], (12) 

a o T2 [s (t), t] = rys' (t), X~ ~ T1 [s (t), t] -- ~2 -~x (13) 

Tl[s(t) ,  t l = T s ,  (14) 

T2[s(t)i t l = T ~ ,  (15) 

where Rx is the thermal resistance of the sublayer adjoining the solid Dhase and R2 is that 
adjoining the liquid one. 

These conditions differ substantially from those in the corresponding system of Stefan's 
conditions. The differences apply to (12), (14), and (15). In an idealized Stefan model, it 
is assumed that RI = R= = R = 0, so (12) becomes 

Tz--T8 = 0 
when 

T z = Ts =Tmp. 
We note that this general model corresponds to Academician Bochvar's viewpoint, accord- 

ing to which the solidification region is divided into two parts[ the liquid--solid region, 
which includes the zone of microscopic liquid displacements, and the solid--liquid one, which 
includes the zones of local and microscopic liquid displacements. 

This model is a refinement of the ideal Stefan model. If AT = T z -- T s is small by com- 
parison with Ts, the errors in estimating the phase-transition boundary and the temperature 
distribution will be fairly small. On the other hand, these errors increase substantially 
with AT. 

We consider the internal inverse problem: determining the boundary condition at the im- 
mobile boundary x = 0 to provide a given law x = s(t) for the displacement of the phase bound- 
ary by the use of additional information on the solution at internal points. 

We substitute this inverse problem into the model with lumped parameters: 

aT 1 02T1 - - - - a ~ - - ,  t > O , - - o o < x < s ( t ) ,  s(O)=O, (16) 
Ot Ox ~ 

aT2 02T2 
at =a2 Ox---7-- ~ , t > O ,  s ( t ) < x < O ,  (17~ 

TI(x,  0)= Ts, --oo < x < 0 ,  (18) 

Tl(--oo, t)-=Ts, t > 0 ,  (19~ 
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T,[s(t),  t] = T,, t : > 0 ,  

T~ [s (t), t] = Tz, t :>- O, 

(20) 

(21) 

O T~[s(t), t ]+ R~g~-~-X- x T~[s (l), 11, Tz ~- T8 = Rl%1-2--" 
OX 

(22) 

0 
xl T1 [s (t), q -- ~o a T~ [s (t), t] = r t s '  (t), 

Ox " Ox 

T~ (Xo, t) = ~ (t). 

(23) 

(24) 

From this system of equations, we have to determine Tt(x, t), T~(x, t), and in particular 
T=(0, t) = f(t) with a known law x = s(t) for the displacement of the phase boundary. 

Theorem. The phase-boundary displacement law can only be uniform. 
by the function 

for 

\ a~ / 2, 2 

This law is provided 

( 2 5 )  

L ~ ~2 

where v is the phase boundary displacement rate. 

Proof_~. I ~ On considering the boundary-value problem of (16) and (18)-(20), we see that 
it has a unique solution by virtue of certain theorems. As Tt (x, t) - T s is the solution to 
this problem, as can be verified by direct substitution, this solution is unique. Then we ar- 
rive at an inverse formulation in the one-phase form (the subscript 2 is omitted below): 

OT O~T --a - - ,  t > 0 ,  s ( t ) < x < 0 ,  (27) 
Ot Ox ~ 

Tis(0,  q = T .  s ( o ) = o ,  (28) 

0 
Tz - -  T8 = R3, - 7 - -  T [s (t), t], 

ox 
(29) 

2 ~ . On comparing (29) 

- -  2~- 0 _  T [s (t), t] = r?s' (t),  ( 3 0 )  
Ox 

T'(xo, t) = cp(0. (3! )  

and (30) we get that 

T z ~ T s 

- -  q , r  (t) = R 

when 

s' (t) = 
~Pl - -  TS 

Rry 

by virtue of which's(t) = -vt + C, where 

Tl - -  T ,  

Rry  
== const, 

and C is an arbitrary constant. 

(32) 
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As s(0) = 0, we have C = 0, and therefore s(t) =-vt. 
ily get the thermal resistance: 

Tz--T~ 
R 

ryv 

From (32) with a known v we read- 

3 ~ We than get a noncharacteristic Cauchy problem: 

OT 02T 

Ot Ox ~ ' 
t>O,  - - v t < x < O ,  T( - -v t ,  t )=Tz ,  t > O ,  

T ( - -  vt, t) = r?v, 
Ox ~, 

with data on the straight line • =-vt. It is known [i] that if the solution to this problem 
exists, it is unique. 

4 ~ We now use some known results [2] on the noncharacteristic Cauchy problem for the 
heat-conductlon equation to get the solution as 

whence we derive the function T(0, t) = f(t) as 

(33) 

f (0 = Tz exp + 
t 

5 ~ Let the phase boundary displacement rate be an unknown quantity. From (33) we get 

q~ (t) = Tz exp (Xo -k vt) -k 

from which v can be determined. 

NOTATION 

X, thermal conductivity; a, thermal diffusivity; y, density, y,= Ya = Y; t, time; x, spa- 
tial coordinate; x = s(t), phase boundary; r, latent heat of melting; T(x, t), temperature; 
Tl, liquidus temperature; Ts, solidus temperature. Subscripts: i = i, solid phase; i = 2, 
liquid phase. 
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